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The rheology of particulate dispersions which are strongly influenced by particular 
types of non-hydrodynamic forces is analysed within the framework of suspension 
mechanics. Interactions between particles in a homogeneous shear flow without inertia 
are governed by viscous, electrostatic, London-van der Waals and Brownian forces. 
The balance among these provides the fluid with a microstructure described quanti- 
tatively a t  dilute concentrations by a pair distribution function and qualitatively by 
a characteristic interaction length. The bulk rheology follows from the microstructural 
variables through suitable averaging. 

In dilute electrostatically stabilized suspensions of small rigid spheres for which 
London-van der Waals attractions and hydrodynamic interactions can be ignored, 
the theory predicts a Newtonian low-shear limit. The analytic expression for the 
viscosity contains a @?-coefficient which can be quite large and agrees well with experi- 
mental data. At higher flow strengths a scale analysis of the pair conservation equation 
indicates a shear- and strain-thinning rheology, representing a breakdown of the fluid 
microstructure. Without flow the interaction length attains a maximum determined 
by the balance between Brownian motion and electrostatic repulsion. A weak shear 
merely perturbs this balance but generates stresses proportional to the fifth power of 
the length. With increasing shear rate this length and consequently the shear viscosity 
are reduced until viscous interactions completely dominate. Asymptotic solutions for 
an intermediate regime in which Brownian motion and hydrodynamic interactions 
are both negligible reveal power-law extensional and shear viscosities with non-zero 
normal stresses. 

1. Introduction 
Suspensions of micron or submicron particles in Newtonian fluids are well known 

for their complex rheology and its sensitivity to their electrochemical state. For 
example, Freundlich & Jones ( 1936) had difficulty discriminating between systems 
for which the shear viscosity increases with increasing rate of strain (shear-thickening) 
and those for which it decreases (shear-thinning) solely on the basis of particle size, 
shape and concentration and solvent type. In retrospect we can attribute this failure 
to the fact that these parameters do not characterize all the important forces. 

Fryling (1963) demonstrated the critical role of electrical forces by transforming a 
low-viscosity suspension of N 0.1 pm polymer latex spheres into a gel by removing the 
free electrolyte which shields (or neutralizes) surface charges. More recent experiments 
on similar spheres in a variety of solvents have revealed several different steady-state 
viscosity-shear-rate relationships. Krieger ( 1972) and Krieger & Eguiluz (1 976) 
obtained monotonically decreasing viscosities with a constant high-shear asymptote, 
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but both finite (Newtonian) and apparently infinite low-shear limits. On the other 
hand, Hoffman (1972, 1974) observed shear-thinning a t  low shear rates followed by 
a continuous, or sometimes discontinuous, increase in viscosity. At still higher shear 
rates the viscosity steadily decreased again. These phenomena depended strongly on 
the volume fraction of spheres, their surface charge and the ionic strength of the solvent. 

These and other experiments on model systems have successfully correlated some 
rheological characteristics with microstructural parameters (Jeffrey & Acrivos 1976). 
The relevant non-hydrodynamic forces appear to be Brownian motion, electrostatic 
repulsions and London-van der Waals attractions. Quantitative predictions of bulk 
rheology have been lacking, however. Before proceeding in this direction, we must 
recognize some of the unique characteristics of suspensions of charged colloidal 
particles. 

Solid particles dispersed in a fluid are thermodynamically unstable since aggregation 
lowers their free energy. The dispersion can be preserved, however, if the rate of 
flocculation due to London-van der Waals attractions is sufficiently reduced by 
electrostatic repulsion between like surface charges. The classical Derjaguin-Landau- 
Verwey-Overbeek theory (Verw ey & Overbeek 1948) combines these interparticle 
forces with Brownian motion to quantitatively predict stability criteria and floccula- 
tion rates for such dilute electrostatically stabilized suspensions of spheres. Recently 
Spielman (1970) and Honig, Roebersen & Wiersema (197 1)  have modified the theory 
to account correctly for viscous interactions at  small separations. 

When velocity or electric fields are applied to systems of charged particles so-called 
electrokinetic phenomena arise. These owe their unusual character to the interaction 
among viscous, Brownian and electrical forces in the interfacial region, where counter- 
ions attracted from the bulk fluid form a diffuse ion cloud which shields the surface 
charge. The extent of this ‘electrical double layer’ is characterized by the Debye 
length 1 / ~ ,  which is generally 0.1 pm or smaller in aqueous systems. Thus electrostatic 
forces will be significant only for micron or submicron particles unless the concentra- 
tions are high enough for the characteristic separation to be submicron. At  these 
length scales inertia is negligible even for quite strong flows. 

These phenomena can be described mathematically by first adding an electrostatic 
body-force term to the Stokes equations to obtain 

- v p  +po v2u = pv+, v . u = 0. (1) 

Here u is the fluid velocity, p the pressure, po the viscosity, @ the electrostatic potential 
andp the charge density. The last is related to the number densities nk of the individual 
ions.through the valences zk by 

p = e 2 zknk, 
k 

where e is the electronic charge. The ion conservation equations which determine the 
nk, i.e. ank 

-+u.Onk = wkkT 
at (3) 

can be derived from the convective, diffusive and conductive fluxes for point charges. 
Here uk is the ionic mobility, k Boltzmann’s constant and T the temperature. 
Finally, Poisson’s equation 

with E the dielectric constant of the fluid, completes the set. 
vz$k = ( - 47T/E)P, (4) 



Suspensions of charged rigid spheres 211 

Without flow or- an external electric field the conservation equations integrate to 
the Boltzmann distributions 

nk = no" exp ( - ezk$/kT), 

where nk-+n$ and $ + O  in the bulk fluid. This represents an equilibrium between 
electrostatic attraction and thermal motion and leads to the Poisson-Boltzmann 
equation 

which describes the potential within an equilibrium double layer. For a sufficiently 
small surface charge density ezk$/kT will be small everywhere and the exponentials 
can be linearized to obtain the Debye-Huckel approximation 

'02$ = K2$, (6) 

where 

For a flat double layer with surface potential 

demonstrating that falls to l /e at a distance x = 1/K from the surface. Also 

/ ) P ( X )  d X / f o m P ( 4  ax = 114 ( 8 )  

indicating that the Debye length characterizes the 'centre of charge' of the diffuse 
ion cloud. 

Electrokinetic and electroviscous phenomena entail a disturbance of the equilibrium 
double layer. For example, any motion of the bulk fluid relative to the interface will 
convect ions and affect nk through the second term in (3). I n  response the electrostatic 
and Brownian forces attempt to restore equilibrium by moving the ions relative to 
the fluid, thereby dissipating energy. Booth (1950) solved these equations for uniform 
straining of magnitude y around a single sphere of radius a with a small surface charge 
&. He obtained the following for the viscosity p of a suspension of these neutrally 
buoyant spheres a t  small volume fractions 9: 

~/ruo-l = p0 = 1 + Pe*qZZ(aK), 
Q9 (9) 

where Pe* = ekT/e2po 00, q = e2Q/4naakT, Z(aK) = dimensionless function tabulated 
in his paper and w0 = characteristic ionic mobility. Similarly, Booth (1954) derived 
the extra drag on a sphere translating with velocity u through a quiescent fluid as 

drag/6npoau = PI = 1 + 4Pe*q&(a~),  (10) 

where V , ( ~ K )  was also tabulated. These results pertain to small ion PBclet numbers 

Pe = a2y/w0kT or au/wOkT 

for which the convection only slightly distorts the equilibrium double layer. Po and 
PI are generally close to one. A comprehensive review by Saville (1977) contains a more 
detailed description of these and other electrokinetic phenomena. 
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FIGURE 1. Interactions between two spheres in a shear flow. . . -, uncharged with hydrodynamic 
interactions; - , charged without hydrodynamic interactions; ---, according to Chan et nl. 
( 1966). 

At higher concentrations electrostatically stabilized colloidal suspensions can be 
substantially more viscous than suspensions of larger particles because of the inter- 
particle forces. As two charged spheres approach one another in a simple shear flow 
(figure 1 ), the electrostatic repulsion forces them across fluid streamlines, dissipating 
energy. This phenomena, known as the secondary electroviscous effect, was first 
analysed by Chan, Blachford & Goring (1966). They hypothesized straight upstream 
and downstream trajectories connected by the arc of a circle along which the electro- 
static and viscous forces approximately balance (figure I). The additional dissipation 
and, hence, the effective shear viscosity were shown to be proportional to the 
displacement normal to the undisturbed streamlines. Since viscous forces increase 
with shear rate while the electrostatic force remains constant, the displacement and 
the viscosity must decrease with increasing shear rate. Thus the analysis, though 
crude, qualitatively predicts the observed shear-thinning. Unfortunately, the approach 
reveals nothing about normal stresses or characteristic time scales. Furthermore, 
Brownian motion, which dominates the zero-shear limit, was omitted, generating an 
infinite viscosity contrary to experimental results on dilute suspensions (Stone-Masui 
& Watillon 1968). 

This paper and an earlier one (Russel 1976) begin a full analysis of the bulk rheology 
of electrostatically stabilized colloidal suspensions. Suspension mechanics provides the 
framework within which colloidal forces are combined with a proper treatment of the 
fluid mechanics. 
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2. Colloidal interactions 
The analysis below pertains to monodisperse suspensions of charged rigid spheres 

surrounded by an electrical double layer whose thickness is characterized by the 
Debye length 1 / K .  For neutrally buoyant colloidal particles the Reynolds number 
defined in terms of the radius a and the second invariant of the rate of strain y, i.e. 
Re = pa2y/,uo, is small even for strong flows; for example, for 1 pm spheres in water 
at  y N 1035-1, Re N Inertia can therefore be neglected. 

Two additional assumptions simplify the analysis. Sufficiently strong electrostatic 
repulsions prevent close approach of the spheres, allowing both hydrodynamic 
interactions and molecular attractions to be neglected. Consequently, flocculated 
suspensions are excluded from the theory. Second, only double layers slightly per- 
turbed from equilibrium will be considered. As demonstrated previously (Russel 
1976), this requires both Pe and the electric Hartman number, given by 

to be small. Then (9) and (10) adequately describe the primary electroviscous effect 
and the drag on an individual sphere. For 0.l-l-Oprn spheres Pe will remain small for 
shear rates less than 103s-'; H:, however, is O(1) for $o 2 25mV, so this assumption 
must eventually be re-examined. 

For a study of rheological phenomena which depend on interparticle forces, pair 
interactions provide the simplest relevant model. The suspension microstructure can 
then be described statistically by the probability density P(xo + rlx,) of finding a 
second sphere at xo + r given a test sphere at  xo. Since the total number of spheres 
remains constant in a closed system, a conservation equation for P can be derived 
from the convective and diffusive fluxes: 

Here hydrodynamic interactions between the spheres can be included in the relative 
velocity u and the relative diffusion tensor D. Explicit forms for these functions can 
be found in Batchelor & Green (1972) and Batchelor (1975). 

Without hydrodynamic interactions the equation reduces to a form originally 
proposed by Smoluchowski (1917) in his classical work on Brownian and shear- 
induced flocculation. Then 

u = F,,/3npo up1 + Vu . r, (12) 

where F,, = electrostatic force on each sphere, Vu = bulkvelocitygradient, r = relative 
position vector and 

(13) 

which equals the sum of the individual diffusivities. 
Although no general electrostatic force law for two charged spheres has been obtained 

from the nonlinear Poisson-Boltzmann equation (5), two approximations suit our 
current needs. For small surface potentials (e$,/kT 4 1)  and separations r - 2a larger 
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than 1 / K ,  the linearized potentials around isolated spheres can be superimposed. Bell, 
Levine & McCartney (1970) thus determined 

F,, = qk; a2( 1 + Kr) r-ze-K(r-2a). (14) 
For thin double layers ( a ~  9 1 )  and separations larger than 1/K but smaller than a, 
the exact solution for two flat plates can be adapted to spheres. An outer solution, for 
separations larger than a, of the form (14) completes the force law as (Bell & Peterson 

Both forces decay exponentially for K ( r  - 2a) > 1 owing to the shielding of the surface 
charge by the counter-ions in the double layer. 

Finally, a bulk stress is needed to relate the microstructure characterized by P to 
macroscopically observable forces. Volume and ensemble averaging techniques 
developed for suspension mechanics have been discussed by Batchelor (1970). The 
development depends on the existence of an intermediate length scale chosen much 
smaller than the macroscopic scale of the flow process but much larger than both the 
characteristic particle dimension and the mean Separation. Then a bulk stress C 
satisfying a macroscopic equilibrium equation V . C = 0 can be determined. In the 
electrostatically dilute limit @/aK < 1, electrostatic forces can be included as 

The individual terms are (a)  the solven tstress, ( b )  the single-particle contribution, 
( c )  the far-field, or kinematic, hydrodynamic interaction and (d )  the interparticle- 
force contribution. The last three terms comprise the spheres’ contribution to the 
bulk stress if near-field hydrodynamic interactions are ignored. Batchelor & Green 
(1972) obtained the residual interaction term (c) while (d )  was derived by Russel 
(1976) from the disturbance due to two well-separated spheres at  relative positions r 
subject to equal but opposite forces F and - F. The dipole form of the latter resembles 
the bulk stress for molecular models with entropic springs connecting spherical beads 
(Bird, Warner & Evans 1971). 

In the next section the above equations are scaled to characterize the rheology 
qualitatively before results are presented for two limiting cases. 

3. Scale analysis of pair interactions 
The interaction of two colloidal particles under the influence of Brownian motion, 

electrostatic repulsion and viscous forces can be characterized by a separation L at 
which the magnitude of the electrostatic force becomes comparable to those bringing 
the particles together. The former increases rapidly with further decreases in separa- 
tion, virtually excluding closer approach and causing the pair density to vary sharply 
from O(n)  outside L to M 0 inside. While one might expect L to vary from 2a, for 
negligible repulsion, to infinity, for dominant repulsion, multiparticle interactions will 
always become significant around the mean separation 2a/@. 
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With L as the length scale the colloidal and hydrodynamic portions of the particle 
stress given by terms (d) and (b)-(c) in (16) have magnitudes 

6npO aL2 y x L3 x n2 - C L ~ Y ( L / ~ ) ~ $ ~ ,  -poll ) (17) 
dipole volume of pair 

strength integration probability 

ChYd PoY$(l+ $1. 
Thus with strong repulsive forces L/a will be large and the colloidal contribution to 
the bulk stress will overwhelm the hydrodynamic contribution. The magnitude of L 
is estimated below from the pair conservation equation for thick double layers 
( U K  < 1 )  with ( 1 4 )  for the electrostatic force while analogous results for thin double 
layers (aK  1 )  with (15) are described later. 

The individual terms in the pair conservation equation are 

convection - KLY, 

suggesting two dimensionless groups: 

electrostatic force a - '@: a a ~ e 2 1 Z K  

kT Brownian motion ' 
37woa3P1 y - viscous force r =  kT ( a K ) 2  Brownian motion' 

For the suspensions considered here, flocculation is prevented by strong electrostatic 
forces; hence a will be quite large. The magnitude of I?, however, varies with the rate 
of strain. From bhe dimensionless forms of the above terms, 

convection - rKL, 

1 + KL C--KL electrostatic - a- 
(KL)2 

7 

diffusion - 1 ,  

we can now determine KL as a function of cx and I?. 

and diffusion terms to balance at  
For weak flows convection can be neglected to first order, leaving t'he electrostatic 

a 1 1 
K ln(a/lna) K 

= - 9 ( a ) ,  say. L - -In 

The bulk stress follows as 
p o l l  Po Y $2[=W)/a~157 

with convection remaining negligible so long as r < l / Y ( a ) .  

balance the electrostatic force: 
Alternatively, for strong flows diffusion plays a minor role and convection must 
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L 

1 a 
- In 

In (allxi a)  K ln(a/lna) 

W P O  Y 

In (a/ln a)  

a’ 

2a 

t a’ = a/F. 
TABLE 1. Scale analysis for a~ < 1. 

Here two asymptotic limits for KL are possible depending on the magnitude of r/a. 
When the flow is still weak compared with the electrostatic force, r /a  < 1 and the 
interaction occurs at the outer edge of the double layers, where the repulsion decays 
exponentially, so that 

and -poll p0 ~ 9 w ) / a ~ 1 5 .  

Such ‘weak ’ interactions will occur without significant Brownian motion provided 
that 

When I? becomes larger than a the interaction moves into the inner, or Coulombic, 
region, for which KL g 1.  Then ionic shielding is negligible, so that (18) yields 

L N K-ya/r)f 

C C O l l  - p o y p  (a/r)+/(uK)S. 
and from (1  7) 

The colloidal stress will still dominate the hydrodynamic component provided that 
r < C Z / ( U K ) ~ .  Eventually, the increasing flow strength must overcome the repulsive 
force when I? 3 a / ( u ~ ) ~ )  leaving 

L - 2U) CbYd + C C O l l  - p0y& 1 + 9,. 
The summary in table 1 illustrates several points. First, an electrostatically 

stabilized suspension in which pair interactions dominate the rest state, i.e. 

should have a relative viscosity C/po y which is constant for weak flows but decreases 
with increasing rate of strain. Second, the breakdown of structure producing this 
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FIGURE 2. Normalized shear-viscosity data of Chan et al. (1966) on polymer lattices. 
e, ue-4aK = 0.70; m, ae-4uK = 9.7; A, ue-4aK = 35; +, ue-4aK = 75. 

strain-thinning is governed by t,wo different t'ime scales even for a monodisperse 
syst,ein : 

-3 (Brownian), 
kT ( u K ) ~  

3n,u0,4 e r z n K  
(electrostatic). -- 

€$;K2  UK 

For thin double layers (aK B l) ,  the appropriate electrostatic force law (15) dictates 
a modification of the first dimensionless group to 

a = 16e - kT a ( m )  e2aK tanh2- e#0 

(ezI5 4kT * 

An analogous scaling argument yields similar results except that the inner region 
disappears and hydrodynamic interactions become important when 

r = 0 ( ~ ~ - 4 a ~  ). 

The data of Chan et al. (1966) plotted vs. I? in figure 2 substantiate the scale analysis. 
The ordinate is t,he measured qP-coe%cient normalized by its value at the lowest shear 
rate. Shear-thinning occurs for l? < O(1) and the second time scale qualitatively 
explains the spread of the curves for I' > 1 .  Even a t  16000s-1 the electroviscous 
effect persists a t  - 20 yo of the low-shear value. 

The following sections contain analytic solutions for two of the above cases. First 
a theory valid for arbitrary a K  in the low-shear limit is developed as a matched 
asymptotic expansion for a 9 1. Here the suspension is isotropic and Newtonian. 
Then the Coulombic interaction limit demonstrates the non-Newtonian behaviour. 
Both solutions quantitatively support the preceding scale analysis. 

4. Low-shear limit 
In the absence of flow, Brownian motion and the interparticle electrostatic repulsion 

balance to determine a spherically symmetric pair distribution for the spheres which 
resembles the Boltzmsnn distribution of ions in the double layer. Introduction of a 
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weak homogeneous shear flow perturbs this distribution slightly and the resulting 
unbalanced forces generate bulk stresses. In  a previous paper (Russel 1976) both the 
perturbed distribution and the particle stresses were calculated numerically for 
e$olkT < 1,  a K  = O( 1)  and lo2 < a < lo5. Analytic solutions have now been obtained 
for this case as well as for a K  9 1 and arbitrary e$,/kT subject to the same restrictions 
of strong electrostatic repulsions, i.e. a 9 1, and negligible hydrodynamic interactions. 

With the linear-superposition approximation (14), the scaled form of (1  1) with (12) 
and (13) is 

VgP = aV,.P- R3 +Re-RR+ r(a. R +  E .  R )  . V ,  P ,  (20) 

where R = K r ,  R is the dimensionless vector separation, and 

a = -  1 v u  - (VU)T  E = -  1 v u  + (VU)T 

2 (Vu: V U ) t  ’ 2 (Vu:Vu)t 

are the dimensionless vorticity and rate-of-strain tensors, respectively. The appro- 
priate boundary conditions are 

a t  R = 2 a ~ ,  
R 

aR ap = P [ a G R e - R +  r 

P - t n  as R+m,  I 
representing a stable suspension with zero rate of flocculation and a spatially homo- 
geneous microstructure with number density n a t  large separations. Then in the 
low-shear limit, where r < 1,  the pair density can be expanded as 

The equilibrium distribution Po follows from (20)  with I? = 0 as 

Po = n exp ( - ae-R/R). 
The O ( r )  equation 

1 d df 1 + R  df 6f 1 + R  R2-+a-e-R--- = a - e-R, PdR dR R2 dR R2 R 

with f + O  as R+m,  

dfldR = 2 a ~  at R = ~ U K ,  

determines the radial dependence of the perturbation. The particular solution is 

f, = *R2, 

leaving the homogeneous solution to satisfy the boundary conditions 

I fh+-&R as R+m,  

df,JdR = 0 at R = 2 a ~ .  

(24) 

An exact analytic solution for f h  has not been obtained because of the electrostatic 
force term 
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which ranges from O(a) 9 1 for R = O(1) to exponentially small values as R-too. 
The transition occurs in an O( 1)  region about 

R - 9 ( a )  = do, 

producing, for example, the equilibrium pair distribution 

0 for R Q KL,, 
n for R &  KL~.  Po { 

For a 9 1 we seek instead asymptotic solutions in three regions: 
( a )  inner, R = O(1); 
( b )  intermediate, p = R - d O  = O(1);  
( c )  outer, R 3 K L ~ .  

Then the electrostatic force dominates the inner region, Brownian motion dominates 
the outer, and only in the intermediate region must both be considered simultaneously. 

In (a)  the appropriate expansion is 

f inner = go+gl/a+**. ,  
which produces 

L R e - R d g ,  = 0 
R2 d R  

dgo/dR = 0 at R = 2 a ~  

dg, /dR = 0 a t  R = 2 a ~  I 
with general solutions 

go = co, g, = (6co/e) Ei (1 + R) + c l ,  

where e is the exponential and Ei the exponential integral. Without diffusion the 
expansion is singular and g1 cannot satisfy the no-flux condition at  R = 2 a ~ .  An ‘inner 
inner ’ solution valid for R N 2UK would resolve this difficulty and uniquely determine 
c, but is unnecessary since c ,  will not be needed further. For later reference 

In the intermediate region (24) transforms to 

- d2f df df IdP dp2 + e-P - 
[In In (a/ln a) ’ [In 

+ ... The expansion Ql 

= [ln (a/ln a)12 

Go = a, + a2 Ei(e-P), 
produces a first-order solution 

for which lim Go = lim firmer determines a, = co and a2 = 0. From the second-order 

equation 
p - f -  m R-KLO 

G, = a3 + a4 Ei (e-P) + 6c0 Ei (e-P) Ei ( - e-P) + exp ( - e-.) Ei (e-.) d u )  , (32) 

with a3 = n4 = 0 following from matching with firmer. 
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R= K r  

FIGURE 3. Comparison of numerical and asymptotic solutions for perturbed distribution for 
a = lo6 and KL = 9.31. -, numerical solution; ---, first-order asymptotic solution. 

In the outer region the electrostatic term can be neglected to  first order, so that 

her = bl R2 + b2/R3. (33) 
The constants follow from the outer boundary condition (25) and the matching 
condition, 

as b 1 --I - 2 ,  b 2 --I( - 3 K L o ) ~ ,  CO = - Q ( K L O ) 2 .  (34) 

Finally, the complete homogeneous solution is as follows. 
( a )  In  the inner region R < K L ~  

(35) 

( b )  In the intermediate region R = K L ~  + p  

) I P + 1 exp ( - e-.) Ei(e-") du + O ( K L , ) - ~  . (36) 
--a, 

(c) In the outer region R B KL, 
f = -IR2- ~ ~ 5 1 ~ 3 .  (37)  

This analytic approximation is compared with the previous numerical calculations 
for a = lo5 in figure 3. 

The electrostatic contribution Cel to the particle stress can now be calculated by 
substituting (23) and (14) into (16) and integrating over a spherical surface to  obtain 
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e$o - 
Run kT lZK U 

1 2.41 1.13 3160 
2 2.38 1.61 11500 
3 4.20 0.91 3990 
4 3.54 0.73 1760 
5 3.50 0.81 1800 
6 3.34 0.81 1640 
7 3.50 1.45 14400 

- 2.94 - 8 
9 3.40 9.28 4.64 x 10" 

10 3.36 3.84 1.11 x 107 
11 3.86 0.91 3370 

01 
In - 

In a 

5.97 
7.11 
6.18 
5.46 
5.48 
5.40 
7.32 
- 

23.6 
13.4 
6.03 

qhoefficient 
f 

A 
\ 

Experimental 
--7 

Reported polated 
Inter- 

(1968) (1  976) Theoretical 

319 450 376 
172 190 160 
595 - 1300 

1148 2110 2200 
466 1010 1330 
388 - 1240 
197 320 282 

10 
45 

1400 - 1160 

- - - 
- 0 - - 

TABLE 2. Comparison of theory with experimental 
data of Stone-Masui & Watillon (1968). 

The two exponentials in the integrand render the contributions from the inner and 
outer regions negligible, leaving a single term from the intermediate region: 

1 In ( a )'In Im (Go@) + ~ ( K L ~ ) ' )  e-Pexp ( - e-P)  dp a ln(a/lna) h a  

Thus in the low-shear limit the suspension is isotropic and Newtonian with viscosity 

a )4-f-{1 + o ( ~ L ~ ) - l } .  (40) In(a/lna) ( u K ) ~  
P 
PO 
- = 

The last term in the viscosity agrees closely with the previous numerical solution and 
applies to a wider range of a. The direct Brownian contribution to the particle stress 
is zero in the absence of hydrodynamic interactions (Batchelor 1977). 

For a K  9 1,  (15) should be used for the electrostatic force law instead of (14). 
Fortunately, when R >> 1 the two expressions have the same R dependence so (40) 
remains valid but with a given by (1 9). In this range the numerical solution is not 
valid because QK = O(1) was assumed to simplify the inner boundary condition. In 
both cases the results are valid for I? 4 (KL,)-~ provided that Lola 9 1 to avoid 
hydrodynamic interactions and Lola 6 2$-* to prevent multiparticle electrostatic 
interactions. 

Stone-Masui & Watillon (1968) measured both the primary and the secondary 
electroviscous effects for dilute suspensions of charged polymer latex spheres with 
0.73 < aK < 9.28,2.5 6 e-y%,,/kT < 4.3and a N 3 x 10-6cm. Theshearrates, 

2 x 10-4 6 r G 2 x 10-2, 
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I 0 

0 

0 

1 I 

0 0.10 ( !0 
Counter-ionsiAdded electrolyte 

FIGURE 4. Comparison of theoretical predictions with experimental data. 0, constant added 
electrolyte (Stone-Masui & Watillon 1968); *, constant total ionic strength (Stone-Masui 1976, 
private communication). 

and volume fractions were sufficiently low to satisfy the theoretical assumptions. 
Comparison of the qWcoefficient predicted by (40) with the original experimental data 
in table 2 reveals significant disagreement. Since the discrepancies correlate wit,h the 
maximum experimental volume fraction, multiparticle electrostatic interactions were 
previously thought to be responsible (Russel 1976). Recently, another explanation 
has been proposed (Stone-Masui 1976, private communication). The reported double- 
layer thicknesses reflected the added electrolyte only while the counter-ions from the 
surface charges actually comprised a significant fraction of the total ionic strength for 
some runs. Since the Debye length is inversely proportional to the square root of the 
ionic strength while the g42-coefficient depends on ( u K ) ~ ,  the results are quite sensitive 
to the total electrolyte concentration. To account for the variation of counter-ion 
concentration with volume fraction, Stone-Masui (1 976, private communication) 
interpolated among several runs with similar charge densities and particle sizes to 
obtain pipo- 1 us. r$ a t  constant total ionic strength. The modified q42-coefficients 
which she calculated are listed in table 2. Figure 4 illustrates the effect of the counter- 
ions and the improved agreement. 

5. Strong flows with thick double layers 
As illustrated by the scaling arguments, Brownian motion can be ignored for 

sufficiently large shear rates. The pair conservation equation then reduces to first 
order and can be solved by the method of characteristics. Rather than pursue a t,edious 
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numerical integration along three-dimensional characteristic curves, I present here 
analytic results for one limiting case. 

For thick double layers (UK 4 1) the linear-superposition approximation is appro- 
priate and €or 

equation (20) simplifies to 

(a%Re-RR+l?(Sl+E).R .V,P = a - P .  e-R 

R 

In  spherical co-ordinates the characteristic curves are defined by 

R . E . R  
R ’  

d8  Ue 3 -  U+ dP e -- - a - P ,  

_ -  -a- 
ds R2 

(42) 

d R  i + R e - R + r -  R 1 - ds-x’ ds Rsin8’ ds 

where u, and u+ represent the dimensionless angular components of the imposed flow 

u = ( E + Q ) . R .  (43) 

The first three equations determine the trajectories of the interacting pair and the last 
the variation of P along these trajectories. s will be chosen to measure arc length 
downstream from the point a t  which u,. = 0. As s + - 00 

R -+ m, #,8 -+ constants, P + n, 

which corresponds to a uniform distribution upstream. 
Again hydrodynamic interactions are ignored, leaving only the electrostatic force 

to displace the spheres from the fluid streamlines. Since dO/ds and d#/ds are unaffected, 
8(s )  and #(s)  can be obtained independently from R and substituted into (42) to 
provide dR 1 + R  

ds R2 
_ -  - a - e - R +  rRG(s), 

where G(s) follows from B(s) and #(s). 
The minimum separation KL mentioned above is determined by 

dR/ds = 0, 

(KLI3 a 
1 + K L  r -  

KL (air)) 4 1, 

- eKL - or 

Below we analyse the case 

€or which the exponential in (44) can be linearized, so that 

(44) 

(45) 

(46) 

dR a 
ds 
-- - ~2 + rRG(s) (47) 



224 It'. B. Russel 

u, = 29R sin2 0 sin Q cos $, 

with 

t 

where R, is an integration constant. Unfortunately, G(s) cannot be evaluated for a 
general linear flow, so simple shear and uniform straining have been chosen to illustrate 
the rheology. 

R 3 = R 3 ( 1 +  23ry(y2+22) 3a ( l + F ) ] .  

( b )  Uniform straining 

u, = 8 x 64R(cos2 0 - 8 sin 20), 

U, = - + ~ 6 * R s i n 0 ~ 0 ~ 0 ,  UQ = 0, 

as s-t-m. 
cos 0 + [ 1 + exp ( - 6Jrs)]-3 

R-+exp (Q x 64Fs) [l +exp ( -  6tI's)lb 

64 1-$exp(-6trs)  
3 l+exp(-6 t rs )  ' 

G(s) = - 

(49) 

(53) 

with solution 

)) ' (54) 
39a 2+ 

R3 = - p3 exp (69rs) [1+ exp ( - 6tl?s)]3 1 - - 1 - r ( i3( [l+exp(-6)rs)]) 

The constants of integration define the upstream location of the trajectory ( Y, 2) 
for simple shear and the radius p at s = 0 or 0 = an, 

R = 2 x Gtar-lp, 

for uniform straining. For the latter a single constant suffices because of the axial 
symmetry. 
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Simple shear 

c 

FIGURE 5. Limiting streamlines for strong flows a < ?? a / (aK)Y  
for a K  < 1. (a )  Simple shear. ( b )  Uniform straining. 

Two interesting aspects of the trajectories are the minimum separation and the 
shadow zone depleted of particles by the electrostatic force. Approach along the line 

(55) 
of centres defines 

K ~ m i n  = i.is(a/r)* 
at Y = 2 = 0 for simple shear, 

K L , ~ , ,  = i.35(a/r)* 

at 0 = in for uniform straining and 

K L , ~ ~  = i.07(~/r)* (57) 

a t  0 = O,n for axisymmetric compression (pure straining with the signs reversed). 
The limiting streamlines in figure 5 illustrate the shadow zones although far down- 
stream Brownian motion would eventually eliminate the concentration difference. 

From (42) the variation in P along a trajectory is 
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The dominant effect comes from 
R - -g I ,  

near the minimum separation; but dt N I/r, so that  

P + o ( ~ ~ ) Q I .  (5.9) 

A similar conclusion follows from a complete analysis including the singularities 
due to vanishingly small velocities a t  Y = 0 (simple shear) and 0 = in- (straining), 
and allows P to be considered constant for first-order calculations of the bulk 
stress. 

From (16) the deviatoric portion of the electrical particle stress is 

X C l  = -- ” /(nn  - $6) rF‘,(r) P(r)  d3r,  
8na3 

where n = r / r .  The shadow zone, in which P = 0, can be removed from the integral 
and the remaining volume mapped onto a curvilinear co-ordinate system conforming 
to the trajectories. Then integration can proceed along each trajectory emanating 
from upstream infinity using the volume elements derived in appendix A. 

For simple shear with 

F,, given by (14), and the volume element (A 9), 

( 6 2 )  
Without the electrostatic force the particles would follow 

9 = W m  = (%2+@P+ 3’))1 ( 6 3 )  

and (62) would reduce to zero since 

I n n d % d 9 Y d 3  = $ S / d % d + Y d 3 .  (64) 

Thus the non-zero deviatoric particle stresses are directly related to the asymmetry 
in the trajectories; to hasten the numerical convergence of the integrals the unper- 
turbed path has been subtracted from the integrand. 

The major contribution arises from the inner region in which 

(a/r)+a I .  

The integral over this region converges, allowing the outer region to be ignored to  
first order, for all stresses except x;:. I n  this case the exponential deaay of the force 
in the outer region must be included downstream, where 9 B 1 and 

9 - %[I+ 2/cY(9Y2+ 3’)]*. (65 )  
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The final results for the shear stress and the two normal-stress differences are (see 
appendix B for details) 

which is remarkably close to the value Z/poy from the scale analysis. 

7 = 64rs, 

For uniform straining the scaled co-ordinates are 

W = ( r / 3 h ) + R ,  
so that 

Because of the symmetry 

and as shown in appendix B 
x;! = 2;; = -42;; 

* A  

c$\ = 1*43Poy - 
The effective extensional viscosity 

indicates that peXt z 3pSh as for Newtonian fluids while the strain-rate dependence is 
definitely non-Newtonian. 

As indicated earlier these results pertain to a rather restricted range of strain rates. 
The strong electrostatic interactions occur only for r > a while < a/(a~)3is  necessary 
for hydrodynamic interactions to be negligible. Such conditions could be obtained at  
low ionic strengths ( K - ~  - 0.1 pm) with small ( - 0-02 pm) particles having moderate 
surface potentials (e@,/kT - 1-2) subjected to high shear rates ( w  104s-l). The 
qualitative trends, however, should reflect the non-Newtonian nature of the suspension 
over a wider range. 

6. Discussion 
Since only two limiting cases have been analysed, this work can offer no constitutive 

equation to describe the rheology of colloidal suspensions. Nonetheless, several 
interesting features of electrostatically dilute suspensions of charged particles are 
suggested : 

(a )  An isotropic, Newtonian zero-shear limit which is quite sensitive to the ionic 
s trengt h . 
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( b )  Strain-thinning and non-zero normal stresses characterized by a t  least two 

( c )  A Newtonian state at high shear. 
This represents a qualitative difference from the rheology predicted for polymer 

solutions by various molecular models: random coils (Lodge & Wu 1971), elastic 
particles (Hinch 1971), slender rods (Hinch & Leal 1972) and dumbbells (Bird et al. 
197 1) .  In particular, the extensional viscosity decreases with increasing rate of strain 
and apparently Trouton’s ratio remains E 3. On the other hand, with Nl + 0 these 
fluids are not purely viscous but do exhibit memory, or elastic effects. While no 
surprise, these results deserve emphasis because of the prevailing orientation of 
rheology towards polymers. 

In the strong-flow limit hydrodynamic interactions wouId appear to dominate the 
colloidal forces. In  flows with closed streamlines such as simple shear, however, the 
latter can still affect the permanent doublets (Batchelor & Green 1972). Indeed strong 
electrostatic repulsions should eliminate doublets entirely with an O( 1 )  effect on the 
@?-coefficient of the viscosity (Hinch 1976). 

These results remain rigorously valid only for dilute or moderately dilute systems, 
but are sufficiently large to be measurable as well as providing qualitat.ive information 
about higher concentrations. 

relaxation times. 

This work was initiated during a NATO Postdoctoral Fellowship with Prof. G. K. 
Batchelor at Cambridge University. The author is indebted also to Dr E. J. Hinch 
for his stimulating ideas and mathematical assistance a t  key points. Completion of 
the work was supported by the National Science Foundation through Grant no. 
ENG 75-10557. 

Appendix A. Volume elements 
Calculation of volume elements for the non-orthogonal curvilinear co-ordinate 

systems (q l ,  q2, q3) is straightforward but tedious. From Happel & Brenner (1965, 
appendix A), the basis vectors 

and the metric coefficients 
ei = aR/aq, (A 1)  

gi, = ei . e5 (A 2) 

are needed to obtain the volume element 

d V  = d x d y d z  = lgiiI*dq,dq2dq3, 

where 1 I denotes the determinant. 
For simple shear first let (al, qz,  q3) = (7, g, v), where 

= rs, +Y = r p a r / 3 ~ t ) & ,  = Z/Y. (A 4) 

Then W = xi + yj + zk with 
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From the basis vectors 

(7i + j + vk), a g / a g  
(1 + V2 +7’)* 

eg = 

7 

1 

a 9  V 

1 
((93+ 47) i + &j + Qvk)), 

er = ay 1 + v2 + 7 2 ) 1  

the metric coefficients and 
a 2  2 ~4 

rgiil = (%) ( 1 + ~ ~ + 7 ~ ) ~  
can be calculated. With 

the volume element becomes 

where S = YT. 

3 9 2  a9/aY = 3 ~ 2 (  1 + v 2  + 7 2 ) *  

3 2 s i n B d 9 d 0 d $  = W4hd@dv  = d S d Y d 9 ,  

For uniform straining the appropriate co-ordinates are (7,p, $), where 

7 = 6*Fs, 

and 

W = xi+yj+zk 

(A 10a) 

(A l o b )  

(A 1Oc) 

W3=~3exp(7)[1+exp(-7)]Q 

Again from the basis vectors 

er = - (( 1 -;)xi+ (1 -g3) yj - (2 +$I zk), 

ep = - , e $ = - y i + x j  

and the metric coefficients, one can calculate 
exp ( - 27) 

[1+exp(-7)13’ 

Since 
aw 
aP 

9 2  - = p2 exp (7) [ 1 + exp ( - T)]$ 
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one has lgijl = P4 
and dV = W2sinBdWd8d$ = p2drdpd$. 

Appendix B. Evaluation of particle stresses 
The first normal-stress difference Nl for simple shear and x& for uniform straining 

require careful calculation because the integrals (62) and (69) over the inner region 
alone diverge. Thus the exponentially decaying force must be retained in the outer 
region to remove the divergence. 

For simple shear 
N1 = -0.443p0y- 

where 

with 9 9 1. 1, can be integrated once analytically to obtain 

where El(%) = / # T d t ,  

and then expanded for (3a/24F)fg < 1 as 

ln3++1n--0.172 a r ) / A  (1 -5) dA -IA?dA. 

Il can be split into integrals over --co < % < So and X,, < X < 9 with Xo B 1 and 
the second integrated analytically to obtain 

Now when Jl and I2 are summed the In$? terms will cancel. 
The remaining integrals have been calculated numerically as 

Substitution of the above results into (I3 1) provides the formula (66b) for Nl. 
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For uniform straining (69) can be written as 

where 

I3 can be integrated over p and then expanded for p 9 1 to produce 

where the second integral is numerically equal to 2.81. I n  the outer region the 
trajectories are undisturbed to first order, i.e. 

When I3 and I4 are summed the p2 terms cancel while the second term of I4 integrates 
to zero, leaving (71). 
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